
Introduction

The simple go-to mechanism can simulate all control structures. However, a program (as
an encoding of a solution) written in terms of control structures is more maintainable.
The measure of expressiveness of a language is the degree of its richness in well-defined
coherent mechanisms for encoding solutions.

A programming language based on types needs an adequate supply of type construction
mechanisms. Using simpler mechanisms to simulate well-tested ones results in obscure
encoding. The simpler the set of type constructors, the less expressive the language, and
therefore the more obscure and lengthy the encoding.

The enumeration type is indispensable for writing meaningful code. In this paper we
present the several directions in which Z++ extends enumeration. One can associate any
type to an enumeration literal rather than just the numeric type int. It is also possible to
extend an enumeration type in a manner similar to derivation mechanism for classes.

Extension mechanism

Quite frequently we need to include more literals for an already defined enumeration
type. We would like to do so in a way that the new type would have some connection to
the existing type, somewhat like the notion of inheritance with regard to classes.

The following example illustrates the simplicity of extending enumerations in Z++.

enum basicFigures {_square, _rectangle, _triangle};
enum moreFigures : basicFigures {_parallelogram, _trapezoid};
enum mostFigures : moreFigures {_circle, _ellipse};

In this example, moreFigures extends basicFigures, and then mostFigures further
extends the type moreFigures. That means an instance of mostFigures can take on
values from basicFigures.

Z++ treats the literals of an enumeration type private to the type. Thus, the same literal
can be reused in defining other enumerations. It is a Z++ convention that enumeration
literals must be preceded with an underscore, and that no identifier can have a leading
underscore. This makes it easy to distinguish enumeration literals from other strings.
Ambiguities reported by the compiler can be resolved in the usual way, as in
basicFigures::_square, and mostFigures::_square.

Operators

The C++ increment and decrement operators furnish the successor and predecessor
functions for an instance of an enumeration type, as shown below.

mostFigures figure = _trapezoid;
figure++; // now figure is _circle

There are two bracket functions associated with an enumeration type, which retrieve the
first and the last literals of the type. Below, the single brackets retrieves the first value, in
this case the literal _square, and the double brackets retrieves the last literal _ellipse.

for (mostFigures figureCounter = [mostFigures];
 figureCounter <= [[mostFigures]];
 figureCounter++)

// loop body

endfor;

The bracket function can also be applied to an enumeration instance to retrieve its
associated integer value. For example, consider the instance figure defined in previous
example. Then the expression [figure] will evaluate to an integer instance with value
of 4, for _trapezoid.

Collections

The type constructor collection is a generalization of enumeration allowing any type to be
associated with literals of an enumeration. Traditionally, int is the type associated with an
enumeration literal. To avoid confusion, a new type constructor, called collection is used
for the generalized mechanism.

Consider the following definition for Square.

class Square : FigureBaseType
 //members
public:
 //constructors, methods, etc
end;

Suppose we have defined the classes Rectangle, Triangle etc, analogously. The
FigureBaseType is the traditional abstract class for polymorphism. The following
illustrates the type constructor collection. We shall discuss the semantics shortly.

collection basicFiguresType<basicFigures> {

_square<Square>,
_rectangle<Rectangle>,
_triangle<Triangle>

 basicFiguresType(void);
};

A collection generalizes a previously defined enumeration. The compiler will enforce the
rule that a collection must use all the literals of its associated enumeration. For instance,
we cannot leave out the literal _rectangle in the above definition.

An instance of a collection will consist of instances of types specified for the values of its
literals. That is, the constructor for the above collection will call the constructors for
Square, Rectangle and Triangle. The rules are the same as for classes. The default
constructor will call default constructors, and a user-defined constructor for the collection
will call the constructors listed by the user. This allows any desirable initialization for the
values of a collection.

Reaching the Tag and individual Values

A collection is somewhat similar to a tagged union. The tag is internal to the collection
instance, but it can be accessed and modified. The bracket function for an instance of a
collection returns a reference to its tag. For instance, in preceding section we declared the
instance initialFigurs using the default constructor. This sets the tag to the lowest
value of _square. Consider the following lines of code. Recall that basicFigures is an
enumeration type defined earlier.

[initialFigures] = _rectangle; //change collection tag
basicFigures someFigure = [initialFigures];

On the second line, the instance someFigure will be initialized with _rectangle. The
increment and decrement operators also work the same way for collections as they do for
enumeration. In this case, the value of the tag is incremented or decremented.

Collection can have it own methods for manipulating individual values. Furthermore,
reaching individual values is needed for using collections in selection control structures.
The syntax for reaching values is the same as reaching array cells. The following
illustrates a possible use of collections in a switch statement. In each case we are
invoking a different method on the object reached. For instance, squareMethod() is
invoked on the instance of type Square, reached at initialFigures[_square].

switch([initialFigures]) //switch on current tag
 case _square:
 initialFigures[_square].squareMethod();
 case _rectangle:
 initialFigures[_rectangle].rectangleMethod();
 case _triangle:
 initialFigures[_triangle].triangleMethod();
endswitch;

Derivation

Derivation for collections is similar to extending enumerations, except a collection can
have methods, and the methods can be redefined. Thus, derivation for collections is more
like single (public) inheritance. The methods of a collection are public by default, but can
also be protected or private.

In order to extend a collection, first we must extend its associated enumeration type.
Earlier, we extended the enumeration basicFigures to the enumeration moreFigures.
Let us now extend the collection basicFiguresType to convexFiguresType.

collection convexFiguresType<moreFigures> : basicFiguresType {

_ parallelogram <Parallelogram>,
_ trapezoid <Trapezoid>

 convexFiguresType(void);
};

Conclusion

Z++ extends enumeration in several useful directions facilitating more natural encoding.
In addition, Z++ collection type constructor allows associating any type to enumeration
literals.

Collection admits further extensions that are currently under research. Among the
extensions is the notion of shared methods. There are times that a particular method is
shared among types that do not lend themselves to inheritance without distorting
abstraction. Each of these types could belong to a different derivation hierarchy, with that
method cutting across them. In such cases, a shared method of a collection will apply the
method to all of its values, furnishing an elegant way to express a commonality.

